Scalable Information Inequalities for Uncertainty Quantification

نویسندگان

  • Markos A. Katsoulakis
  • Luc Rey-Bellet
  • Jie Wang
چکیده

In this paper we demonstrate the only available scalable information bounds for quantities of interest of high dimensional probabilistic models. Scalability of inequalities allows us to (a) obtain uncertainty quantification bounds for quantities of interest in the large degree of freedom limit and/or at long time regimes; (b) assess the impact of large model perturbations as in nonlinear response regimes in statistical mechanics; (c) address model-form uncertainty, i.e. compare different extended models and corresponding quantities of interest. We demonstrate some of these properties by deriving robust uncertainty quantification bounds for phase diagrams in statistical mechanics models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing the Next Generation Scalable Exascale Uncertainty Quantification Methods

Predictive modeling of multiscale and multiphysics systems requires accurate data-driven characterization of the input uncertainties and understanding how they propagate across scales and alter the final solution. We will address three major current limitations in modeling stochastic systems: (1) Most of current uncertainty quantification methods cannot detect and handle discontinuity in the pa...

متن کامل

Rigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities

We apply concentration-of-measure inequalities to the quantification of uncertainties in the performance of engineering systems. Specifically, we envision uncertainty quantification in the context of certification, i. e., as a tool for deciding whether a system is likely to perform safely and reliably within design specifications. We show that concentration-of-measure inequalities rigorously bo...

متن کامل

The game theoretic approach to Uncertainty Quantification, reduced order modeling and numerical analysis

We discuss the development of Uncertainty Quantification framework founded upon a combination of game/decision theory and information based complexity. We suggest that such a framework could be used not only to guide decisions in presence of epistemic uncertainties and complexity management capabilities constraints but also to automate the process of discovery in (1) model form uncertainty quan...

متن کامل

Forward and Backward Uncertainty Quantification in Optimization

This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.

متن کامل

Optimal Uncertainty Quantification

We propose a rigorous framework for uncertainty quantification (UQ) in which the UQ objectives and its assumptions/information set are brought to the forefront. This framework, which we call optimal uncertainty quantification (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 336  شماره 

صفحات  -

تاریخ انتشار 2017